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Projectile approaches target

non-central collision near the Fermi Energy
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Overlap of target and projectile

Low density neck

Neutron enrichment of low density neck
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Velocity gradient, surface tension

Instabilities develop (Rayleigh-like)
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Rupture of neck
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" PLF* rotates and scissions
NZ equilibration ceases

. Alignment angle measures duration of equilibration
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Dynamical Decay & Neutron Content

Correlation between fragment size and velocity.
Angular distribution shows strong alignment
- Observed in many systems by many groups.
Not compatible with standard statistical decay.

. (cm/ns)

Mechanism: production of low density neck,

followed by multiple neck rupture ...at the expense of

the Quasi-Projectile

Mid-Rapidity Material (neck) 5 peripheral Mid-Peripheral

is heutron rich [ @ MRM
- @ QP

Ta+Au@33AMeV

Colin et al. PRC 67, 064603 (2003)

beam axis
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Early work on N-Z equilibration:
Moretto & Schmitt. Rep. Prog. Phys. 44, 533 (1981)

“In order to follow the time evolution of the
collective degrees of freedom excited in heavy
reactions one needs a clock. Nature has provided
one which, although not very accurate, can span
incredibly short times. This clock is the angular
deflection of the fragments.”
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Longer contact time
- more energy damping
- more N-Z equilibration
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Planeta et al, PRC 35, 195 (1988)

Different projectiles tend toward the same (N/Z)eq Li:and Ko PRC 57 2065 (1998)

N/Z equilibration timescale in BUU
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Galichet et al., PRC 79, 064615 (2009)  Hudan et al. PRC 86, 921603(R) (2012) E. DeFilippo et al., PRC 86, 014610 (2012)
N/Z of complex particles, exp & BNV Xe+Sn@50AMeV Observation of dependence
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Our measurement

70Zn+7%Zn
®4Ni+64Ni
64Zn+64zn
64ZNn+54Ni
@ 35 MeV/nucleon

NIMROD 4rm array
excellent isotopic resolution

Alan Mclntosh, Texas A&M University

Transport 2017, East Lansing



Velocity Distributions

These particles are daughters of the PLF*
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| F Zu=14.2,=5  Dynamical Angular Distributions
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Separating Statistical and Dynamical

Assume yield a>100° is statistical
Reflect around 90°.

Interpolate smoothly 80°<a<100°

What remains is hon-standard statistical

0 20 40 60 80 100 120 140 160 180 . . . .
i.e. what remains is dynamical
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Equilibration Chronometry
Composition vs alignment

A = (N-Z)/A

As LF loses neutrons, HF gains neutrons

Exponential dependence - First Order Kinetics

(A) = ((N-Z)/A)
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Rate of Equilibration

2,712,2,=7

* Heaviest Frag.
¢ 2nd Heaviest Frag. Fit:

A=a+ b exp[-ca]

a: equilibrium value
b: distance from equilibrium at t=0
c: N-Z equilibration rate constant
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Assessing the Time Scale

Evaporative emission of light, charged The equatorial plane is defined by v,
particles contains information on the and the beam axis. The angular
angular momentum distribution of alpha particles relative

to this plane is examined.

For no spin, the emission probability is
equal in all directions. For high spin,
equatorial emission is preferred.
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Assessing the Time Scale
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—Data
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GEMINI simulations: reproducing
this width can be done with spin
from 10hbar (E*/A=0.8MeV) to
50hbar (E*/A=1.2MeV). We can
take J=22hbar with a factor of 2.2
uncertainty.

o=Jh/L

The moment of inertia, I, is
calculated for two touching
spheres with radii given by the
masses of the two fragments.
I:from 2.8E42MeVs? to
9.9E42MeVs? depending on
fragment masses.

t=a/ o
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Time Scale

Z,=12, ZL=7

* Heaviest Frag.
e 2nd Heaviest Frag.
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1/e time (450fm/c)
~0.3zs
(100fm/c)
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What about the effect of...
e Statistical decay

» Effect of secondary decay
e Choice of alignment angle

Alan Mcintosh, Texas A&M University Transport 2017, East Lansing



0.09 Z, =14, ZL=5 Dynamical

am Z, =14, ZL =
Statistical

#Dynamical
* ¢ Statistical

Separating Stat & Dynam

Fractional Yield Z,=14,2,=7

fstat = Ystat / (Ystat+Ydyn)
fdyn = Ydyn / (Ystat+Ydyn)
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Effect of Statistical Decay

A= Astatfstat + Adynfdyn Isolated Dynamical Component
General trend maintained

Z, =14, ZL = 5]
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GEMINI++ Decay to Z=7
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E*= 1AMeV
E*= 1AMeV
E* = 2AMeV
E* = 2AMeV

Effect of Secondary Decay

Shift toward B-stability

Decreases amplitude

Larger effect for larger E*

Dependence of final value on initial value

Secondary Decay mutes the effect

Does not create
Does not destroy
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Effect of Choice of Alignment Angle

o is somewhat more sensitive

Z,=12, ZL=7
@=HF (vs a)
<-HF (vs cpin)
#-LF (vs )
<-LF(vs ¢ )
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angle (degrees)

S Pirrone, Journal of Physics: Conference Series 527 (2014) 012030
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Effect of Beam and Target Composition

* Similar equilibration rates
* Notable differences in composition
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Effect of Beam and Target Composition

70Zn+70Zn vs 64Ni+64Ni
Slightly lower system asymmetry
—> Slightly lower composition
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Effect of Beam and Target Composition

70Zn+70Zn vs 64Zn+64Zn

Lower proj. & targ. asymmetry
- Lower initial asymmetry

- Lower equilibrium asymmetry
- Smaller change in asymmetry
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Effect of Beam and Target Composition

64Zn+64Zn vs 64Zn+70Zn
Increase only target asymmetry
- Higher initial asymmetry in LF
— Same initial asymmetry in HF
- Higher equilibrium asymmetry
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Equilibration rate constants

Timescale is 0.3zs (100fm/c).

This is not only a measurement
of the timescale.

We observe exponential
change in the composition,
infer the effect of first order
kinetics, and extract a rate
constant.
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Yennello Research Group & Collaborators

week ending

PRL 118, 062501 (2017) PHYSICAL REVIEW LETTERS 10 FEBRUARY 2017
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Characterizing Neutron-Proton Equilibration in Nuclear Reactions
with Subzeptosecond Resolution
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Detailed characterization of neutron-proton equilibration in dynamically deformed nuclear systems
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Upcoming Experiment

How does the equilibration depend on bombarding energy?
* More extreme densities probed at higher bombarding energy
e Evolution of shape deformation with bombarding energy
* Evolution of the break-up mechanism with beam energy

Ca+Ni @ 15, 25, 35, 45 MeV/nucleon
NIMROD 4n charged particle and 4mt neutron array
Frags. of PLF*: isotopic resolution
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Dear Colleagues,

Reaction dynamics around the Fermi energy is rich with new things
for us to learn.

Equilibration chronometry can be a powerful tool. It shows time-
dependence! | suggest this can be used to refine the microscopic
interactions used in transport models and thereby constrain the EOS.

We can provide isotopic distributions of dynamically produced
fragments as a function of alignment angle, and relate the alignment
to time.

Together, | would like to explore:

* time dependence of NZ equilibration (actual time)

* time dependence of NZ equilibration (time from angle)

* the evolution of the total density and asymmetry density

» sensitivity to the microscopic interaction (e.g. Asy-Stiff vs -Soft)

Cheers,
-Alan

Alan Mclntosh, Texas A&M University Transport 2017, East Lansing



